REINSURANCE STRUCTURING & OPTIMIZATION

4th Capacity Building Seminar in General Insurance – Institute of Actuaries of India

Presented By: Hiten Kothari

December 19, 2013
Disclaimer

The views or opinions put forward herein the presentation are those of the author and the company, Almondz Reinsurance Brokers Pvt. Ltd., is not responsible for those opinions.

The author assumes no guarantee for the current, correct and complete status or quality of the information presented. Liability claims against the author, which refer to material or immaterial damages that arise through the usage or non-usage of the information presented or the usage of incorrect and incomplete information, are generally waived as long as no intent or reckless fault on the side of the author can be proven. All offers are tentative and non-binding. The author explicitly retains the right to change, add, delete and to temporarily or permanently retract the publication of the presentation in part or in whole without warning.
Contents

- Indian Reinsurance Market
- Reinsurance Structure Considerations
- Reinsurance Structuring
- Reinsurance Optimization
- Conclusion
Indian Reinsurance Market

- Approx. INR 150bn – INR 180bn Premium expected to be ceded during 2013-14
- Treaty Reinsurance forms 25% - 30% of the total RI spend with the rest being Facultative
- Treaty RI business is split into Proportional and Non-Proportional in the ratio 3:1
- In terms of RI premiums, GIC Re is the leading reinsurer followed by Berkshire Hathway, SCOR and Swiss Re
- Fire and Engineering class mainly reinsured via Surplus, Risk XL and CAT XL treaties
- Motor and Marine class are mainly gross Risk and CAT XL.
- Broker involvement to liaise with Foreign Reinsurers
Public Insurance companies have ceded about 30%-35% of the total gross direct premiums (excl Obligatory) for Fire, Engineering and Marine Cargo classes.

For the Motor class less than 10% of the premiums are ceded.

Aviation and Hull business is reinsured mainly within the London market.
Private Insurance companies comparatively retain a very small share of the total gross direct premiums (excl Obligatory) as compared to the Public Sector Insurance Companies.

For the Motor class less than 10% of the premiums are ceded.
REINSURANCE STRUCTURE CONSIDERATIONS
Reinsurance Structure Considerations

• What are the Company’s Goals?
 — Preserve/Create Surplus i.e. Risk Policy and Tolerance
 — Reduce Exposure and Manage Volatility
 — Maintain/Support Capital
 — Business Objective

• Peer Comparison

• Reinsurance Pricing
REINSURANCE STRUCTURING
Proportional Treaty

- **Quota Share**
 - Reinsurer loss experience mirrors that of the cedant. So historical experience of the gross book is important
 - Reinsurer might prescribe underwriting and claims management philosophy for the cedant

- **Surplus**
 - Risk Retention i.e. How much to retain per risk?

- Commission terms i.e. Ceding commission (Flat Commission or Sliding Scale) and Profit commission

- Loss Corridors features
The graph above shows the Risk Retention for Fire and Engineering class of business as a percentage of company’s net worth for the top 10 Indian non-life insurance companies.
Factors Affecting Risk Retention

- Financial Strength
- Insurer’s willingness to take on risks
- Reinsurance Market
- Solvency Regulations
- Underwriting Capacity
- Tradition and Market Practice
- Mix of Business i.e. diversification
Non-Proportional Treaty

- Deductible and Limits for the treaty
 - Too low deductible might result in just dollar swap
 - Too high deductible might mean it's not effective
 - Impact of increasing/reducing deductible/limit
- No. Of Reinstatements
 - What is the chance that the treaty is completely exhausted?
- Alternative Layering suitable i.e. Price advantage
- Should I drop my Surplus/QS and go pure XL?
- Peer/Market Benchmarking
Risk Adjusted Pricing

- Graph plots the Rate on Line charged against the Risk-adjusted layer mid-point for various XL layers
- Can be used to determine changes in Reinsurance rates year-on-year
- Can also be used to benchmark Risk XL pricing across the different companies in a given year
REINSURANCE OPTIMIZATION
Proportional Reinsurance Optimization – Classic Method

Stage 1: Gross Loss Modeling
- Determine the gross underwriting result distribution for the class of business or Portfolio
- Risk Profile based modeling can allow for change in Risk Retention appropriately

Stage 2: Model existing RI Structure
- Model the existing RI structure and determine the appropriate risk metrics e.g. Expected Net Profit, Economic Capital or Return on risk adjusted capital
- Determine pricing factors

Stage 3: Model alternate Risk Retentions
- Model the alternative RI structure with increase/reduce Risk retention
- Determine the risk metrics
- In case of XL structures, adjust technical rates to determine market rates

Stage 4: Compare Results
- Compare the risk metrics across different structures to select the Risk retention that optimizes the Risk metric
Impact on Profitability and Capital at Risk

<table>
<thead>
<tr>
<th>Impact on Profitability and Capital at Risk</th>
<th>Expected Profit and Loss Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Profit and Loss Account</td>
<td></td>
</tr>
<tr>
<td>Gross 2012</td>
<td>Alt 1</td>
</tr>
<tr>
<td>Gross Premium</td>
<td>10,014,000,000</td>
</tr>
<tr>
<td>Reinsurance Premium</td>
<td></td>
</tr>
<tr>
<td>- Base Premium</td>
<td>0</td>
</tr>
<tr>
<td>- Reinstatement Premium</td>
<td>0</td>
</tr>
<tr>
<td>Net Premium</td>
<td>10,014,000,000</td>
</tr>
<tr>
<td>Expenses</td>
<td>2,793,906,000</td>
</tr>
<tr>
<td>Underwriting Result (A)</td>
<td>588,303,214</td>
</tr>
<tr>
<td>Capital at Risk</td>
<td></td>
</tr>
<tr>
<td>VaR (1 in 200 years)</td>
<td>2,551,318,548</td>
</tr>
<tr>
<td>Cost of Capital (B)</td>
<td>255,131,855</td>
</tr>
</tbody>
</table>

- Normal for gross underwriting result to be better than net – this is an average result so takes into account good years as well as bad
- If net is better than gross – could mean reinsurance programme is very cheap – normally reinsurers price for a profit!
- However, when cost of capital is taken into account, net after reinsurance should be much better
- The greater the cost of capital applied the bigger the difference from gross
- The optimal structure will have the highest economic result

Value at Risk = 1 in 200 “bad” underwriting result, i.e. the capital a client would need to hold to be sure of meeting its liabilities in a bad year

Cost of Capital = charge applied to represent costs associated with maintaining or raising that amount of capital

Economic result = Underwriting Result less Cost of Capital
Impact on Profitability – Return on Capital

Variation of previous report
Adds line showing Return on Capital = Underwriting Result / Value at Risk

<table>
<thead>
<tr>
<th></th>
<th>Gross Premium</th>
<th>2012</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
<th>Alt 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Premium</td>
<td>10,014,000,000</td>
<td>10,014,000,000</td>
<td>10,014,000,000</td>
<td>10,014,000,000</td>
<td>10,014,000,000</td>
<td>10,014,000,000</td>
</tr>
<tr>
<td>Reinsurance Premium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Base Premium</td>
<td>0</td>
<td>194,805,000</td>
<td>187,200,000</td>
<td>180,350,000</td>
<td>191,850,000</td>
<td>175,700,000</td>
</tr>
<tr>
<td>- Reinstatement Premium</td>
<td>0</td>
<td>24,114,595</td>
<td>26,237,981</td>
<td>26,244,456</td>
<td>26,469,860</td>
<td>26,012,577</td>
</tr>
<tr>
<td>Net Premium</td>
<td>10,014,000,000</td>
<td>9,795,080,405</td>
<td>9,800,562,019</td>
<td>9,807,405,544</td>
<td>9,795,680,140</td>
<td>9,812,287,423</td>
</tr>
<tr>
<td>Net Retained Losses</td>
<td>6,631,790,786</td>
<td>6,495,658,785</td>
<td>6,491,741,878</td>
<td>6,491,282,227</td>
<td>6,489,186,641</td>
<td>6,493,837,464</td>
</tr>
<tr>
<td>Expenses</td>
<td>2,793,906,000</td>
<td>2,793,906,000</td>
<td>2,793,906,000</td>
<td>2,793,906,000</td>
<td>2,793,906,000</td>
<td>2,793,906,000</td>
</tr>
<tr>
<td>Underwriting Result (A)</td>
<td>588,303,214</td>
<td>505,515,620</td>
<td>514,914,142</td>
<td>522,217,316</td>
<td>512,587,499</td>
<td>524,543,999</td>
</tr>
<tr>
<td>Capital at Risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaR (1 in 200 years)</td>
<td>2,551,318,548</td>
<td>1,690,152,729</td>
<td>1,662,540,556</td>
<td>1,678,434,836</td>
<td>1,666,767,176</td>
<td>1,673,784,836</td>
</tr>
<tr>
<td>Cost of Capital (B)</td>
<td>255,131,855</td>
<td>169,015,273</td>
<td>166,254,056</td>
<td>167,843,484</td>
<td>166,676,718</td>
<td>167,378,484</td>
</tr>
<tr>
<td>Economic Return on Capital</td>
<td>23.059%</td>
<td>29.909%</td>
<td>30.972%</td>
<td>31.113%</td>
<td>30.753%</td>
<td>31.339%</td>
</tr>
</tbody>
</table>
Illustrates how reinsurance reduces volatility in underwriting result and which structure is most effective in doing this.
• Plot the Risk-Reward for gross and each of the alternative structures on the graph

• Best retention option should have best return for least amount of capital at risk and appear in the top left corner

Select the alternative that minimizes risk and maximizes reward
Risk XL - Comparison of Technical Rates v/s Market Rates

<table>
<thead>
<tr>
<th>Component</th>
<th>Technical ROL</th>
<th>Estimated Market ROL</th>
<th>Technical ROL Standard Deviation</th>
<th>Loading Rate</th>
<th>Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>17.300%</td>
<td>25.194%</td>
<td>36.003%</td>
<td>1.456</td>
<td>21.926%</td>
</tr>
<tr>
<td>Layer 2</td>
<td>8.548%</td>
<td>13.376%</td>
<td>25.421%</td>
<td>1.565</td>
<td>18.990%</td>
</tr>
<tr>
<td>Layer 3</td>
<td>2.628%</td>
<td>1.635%</td>
<td>14.536%</td>
<td>0.622</td>
<td>(6.827)%</td>
</tr>
<tr>
<td>Layer 4</td>
<td>0.804%</td>
<td>0.994%</td>
<td>7.759%</td>
<td>1.237</td>
<td>2.452%</td>
</tr>
</tbody>
</table>

- Tech ROL Standard Deviation is the volatility around the Technical ROL and is an indicator of risk – higher for lower more loss affected layers.
- But Co-efficient of variation (standard dev / tech ROL) will be higher for upper layers since these are more volatile even if lower risk overall.
- Loading Rate = Market ROL/Tech ROL – doesn’t take into account volatility of result and just loads the “mean” (tech ROL).
- Risk Factor is the % of the Tech ROL Standard Dev. applied to the Tech ROL to get to the Market ROL. This is a volatility neutral load and so is directly comparable between layers. Can also be described as the Standard Deviation Load.
Classic Method Limitations

- Limited number of options to choose from
- Inability to consider multiple goals or constraints at the same time
- Subjectively limited to initially selected choice of structures
• Risk Retention can be optimized using any one of the following criterias:
 — de Finetti criterion i.e. minimize the variance of the retained loss under the constraint that the expected gain is fixed
 — RORAC criterion i.e. maximize the return on risk adjusted capital of the retained risk
• RORAC is the ratio of Net Profit to the Required Solvency level less retained premium
Final Words

- Reinsurance should be based on the underwriting strategy and not vice-versa
- Reinsurance structuring requires technical knowledge and Appointed Actuary should be involved in the decision making process
- Tap the resources of Reinsurance Brokers
THANK YOU!!

Hiten Kothari
+91 (0) 9867 007 740
hiten.kothari@almondz.com