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Why Bayes, why now

From John Kruschke, Indiana University:

“An open letter to Editors of journals, Chairs of departments, Directors of funding programs,
Directors of graduate training, Reviewers of grants and manuscripts, Researchers,
Teachers, and Students”:

Statistical methods have been evolving rapidly, and many people think it's time to adopt
modern Bayesian data analysis as standard procedure in our scientific practice and in our
educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian data analysis.
We should be leaders of the move, not followers.

2. Modern Bayesian methods provide richer information, with greater flexibility and broader
applicability than 20th century methods. Bayesian methods are intellectually coherent and intuitive.
Bayesian analyses are readily computed with modern software and hardware.

3. Null-hypothesis significance testing (NHST), with its reliance on p values, has many problems.

There is little reason to persist with NHST now that Bayesian methods are accessible to
everyone.

My conclusion from those points is that we should do whatever we can to encourage the
move to Bayesian data analysis.

(I couldn’t have said it better myself...)
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Our profession’s Bayesian heritage

« 1950: Arthur Bailey publishes “Credibility Procedures: Laplace’s
Generalization of Bayes’ Rule and the Combination of Collateral
Knowledge with Observed Data”.

» Anticipates Hans Buhlmann's subsequent work.
* Quotes Richard Price on making inferences from available data.

“At present, practically all methods of statistical estimation appearing in textbooks...
are based on an equivalent to the assumption that any and all collateral information
or a priori knowledge is worthless. There have been rare instances of rebellion against
this philosophy by practical statisticians who have insisted that they actually had a
considerable store of knowledge apart from the specific observations being analyzed...
However it appears to be only in the actuarial field that there has been an
organized revolt against discarding all prior knowledge when an estimate is to be

made using newly acquired data.”
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Our profession’s Bayesian practice

Texts in Statistical Science
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Loss Reserving and its
Discontents



Loss reserving and its discontents

* Much loss reserving practice is still “pre-theoretical” in nature.

» Techniques like chain ladder, BF, and Cape Cod aren’t performed in a
statistical modeling framework.

* (Do people agree with this statement?)

 Traditional methods aren’t necessarily optimal from a statistical
POV.

» Potential of over-fitting small datasets
» Difficult to assess goodness-of-fit, compare nested models, etc
« Often no concept of out-of-sample validation or diagnostic plots

» Related point: traditional methods produce point estimates only.
» Reserve variability estimates are often ad-hoc



Four essential features of loss reserving

Cumulative Losses in 1000's

AY premium 12 24 36 48 60 72 84 96 108

120

1988 2,609 404 986 1,342 1,582 1,736 1,833 1,907 1,967 2,006
) Re p e ate d m e a S u re S 1989 2,694 387 94 1,336 1,580 1,726 1,823 1,903 1,949 1,987
1990 2,594 421 1,037 1,401 1,604 1,729 1,821 1,878 1,919
1991 2,609 338 753 1,029 1,195 1,326 1,395 1,446
1992 2,077 257 569 754 892 958 1,007

* Loss reserving is longitudinal data analysis oo T

1995 1,093 160 312 408

1996 1,012 131 352
1997 976 122

2,036

* A "bundle” of time series
» Aloss triangles is a collection of time series that are “related” to one another
* ... but no guarantee that the same development pattern is appropriate to all

* Non-linear
» Each year’s development patter is inherently non-linear
» Ultimate loss (ratio) is an asymptote

* Incomplete information
* Few loss triangles contain all of the information needed to make forecasts

» Most reserving exercises must incorporate judgment and/or background
information

=» Loss reserving is inherently Bayesian!




Towards a more realistic loss reserving framework

 How many stochastic reserving techniques reflect all of these
considerations?

1.

*1-2 =>

.3
. 4
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Repeated Measures

2. Multiple time series
3.
4

Non-linear

Incomplete Information (“Bayes or Bust”!)

We need hierarchical models

(are GLMs really appropriate?)

(isn’t loss reserving a type of longitudinal data analysis?)

Bayesian

ive Losses in 1000's

48

60

72

84 96 108 120

" n n
-> Non-linear hierarchical models should be
Ci
AY premium 12 24 36
1988 2,609 404 986 1,342
1989 2,694 387 964 1,336
1990 2,594 421 1,037 1,401
1991 2,609 338 753 1,029
1992 2,077 257 569 754
1993 1,703 193 423 589
1994 1,438 142 361 463
1995 1,093 160 312 408
1996 1,012 131 352
1997 976 122

1,582
1,580
1,604
1,195
892
661
533

1,736
1,726
1,729
1,326
958
713

1,833
1,823
1,821
1,395
1,007

1,907 1967 2,006 2,036
1,903 1,949 1,987

1,878 1,919

1,446




Another big motivation: predictive distributions

“Given any value (estimate of future payments) and our current state of knowledge, what is the
probability that the final payments will be no larger than the given value?”
-- Casualty Actuarial Society
Working Party on Quantifying Variability in Reserve Estimates, 2004

* This can be read as a request for a Bayesian analysis

» Bayesians (unlike frequentists) are willing to make probability statements
about unknown parameters

 Ultimate losses are “single cases” — difficult to conceive as random draws
from a “sampling distribution in the sky”.
— Frequentist probability involved repeated trials of setups involving physical randomization.
— In contrast it is meaningful to apply Bayesian probabilities to “single case events”

« The Bayesian analysis yields an entire posterior probability distribution — not
merely moment estimates

=» Bayesian statistics is the ideal framework for loss reserving!
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The Bayesian perspective

“For Bayesians as much as for any other statistician, parameters
are (typically) fixed but unknown. It is the knowledge about these
unknowns that Bayesians model as random...

... typically it is the Bayesian who makes the claim for inference in
a particular instance and the frequentist who restricts claims to
infinite populations of replications.”

- Andrew Gelman and Christian Robert
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Origin of the approach: Dave’s idea + random effects

LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach

ar

How to Increase Reserve Variability with Less Data
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Current state of... um... development
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Components of our approach

Growth curves to model the loss development process (Clark 2003)
» Parsimony — obviates the need for tail factors

Loss reserving treated as longitudinal data analysis (Guszcza 2008)
+ Atype of hierarchical modeling
« Parsimony; similar approach to non-linear mixed effects models used in biological/social sciences

Further using the hierarchical modeling framework to simultaneously model
(Zhang-Dukic-Guszcza 2012)
» “Borrow strength” from other loss reserving triangles
 Similar in spirit to credibility theory
* Insufficient time to cover this aspect today

Building a fully Bayesian model by assigning prior probability distributions to all
hyperparameters (Zhang-Dukic-Guszcza 2012)
» Provides formal mechanism for incorporating background knowledge and expert opinion with data-
driven indications.
» Results in full predictive distribution of all quantities of interest

» Conceptual advantages: Bayesian paradigm treats data as fixed and parameters are randomly

varying
15



Hierarchical Models



What is hierarchical modeling?

 Hierarchical modeling is used when one’s data is grouped in
some important way.
» Claim experience by state or territory
» Workers Comp claim experience by class code
 Claim severity by injury type
« Churn rate by agency
» Multiple years of loss experience by policyholder.
* Multiple observations of a cohort of claims over time

 Often grouped data is modeled either by:
* Building separate models by group
* Pooling the data and introducing dummy variables to reflect the groups

 Hierarchical modeling offers a “middle way”.

« Parameters reflecting group membership enter one’s model through
appropriately specified probability sub-models.

17



Common hierarchical models

- Classical Linear Model Y=a+ pX, +¢
« Equivalently: Y;~ N(a+B X, c?)
« Same q, B for each data point

« Random Intercept Model Yi=a;,+pX, +¢

« Where: Y, ~ N(op+B X, 62)
 And: OLj = N(Mou Gzoc)
« Same [} for each data point; but o varies by group j

« Random Intercept and Slope Model Y=a,,+0,,X;+&

l
* Both o and B vary by group

l

Y, ~ N(aj[i] + B -Xl.,az) where [
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z
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7~ N\
1
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g o
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Simple example: PIF by region

« Simple example: Change in _
PIF by region from 2007-10 PIF Growth by Region
regioni region2 region3 ° region4 ®
. 1 [ ]
* 32 data points e s e oy e ° I . .
* 4 years RN EE . .
+ 8 regions : zite 22 sete zvte 2400 | .
SN °
* But we could as easily have %] o« |, °
. e
80 or 800 regions ®
[ ]
* Our model would not 2000 {
Change region5 region6 region7 region8
2600 1
[/
* We view the dataset as a .
bundle of very short time 2490
. [ | [ | [ ) [ J
series ° ° . °
2200 1 d ° ® °
|
®
2000 1 . . . . . . .
2007 2008 2009 2010 2007 2008 2009 2010
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Classical linear model

Option 1: the classical
linear model

Complete Pooling

* Don't reflect region in the model
design

» Just throw all of the data into
one pot and regress

Same o and [ for each
region.

This obviously doesn’t cut it.

» But filling 8 separate regression
models or throwing in region-
specific dummy variables isn’t
an attractive option either.

» Danger of over-fitting
* i.e. “credibility issues”
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Randomly varying intercepts
Y, ~ N(aj[i] +18Xi952)

» Option 2: random intercept

* Y=o+ BX +eg;

* This model has 9

* And it contains 4
hyperparameters:

* A major improvement
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parameters:
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{ue B, o4 O}
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Randomly varying intercepts and slopes

2
Yi ~ N(aj[i] + Jlil 'Xl-,O'z) where [;j] ~ N({Z"}ZJ , D :|:Ga O'azﬁ:|
. ' s .5 Op
 Option 3: the random slope i

and intercept model PIF Growth by Region

regioni region2 region3 region4
2600 1
* Y=oy + B Xi+ g
°
« This model has 16 - /

parameters:
{og, 0y, ..., Og,

B1’ BZ""’ BS}

* (note that 8 separate models
also contain 16 parameters) region5 region6 region7 region8
* To repeat: the same

2600 1
(
[
o
number of hyperparameters 201

: ' 2007 2008 2009 2010 2007 2008 2009 2010
,, i we had 80 or 800 regions
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A compromise between complete pooling and no pooling

PIF =a+ f[t+¢ {PIF =" +pr+é }k=1,2,..,8
Complete Pooling No Pooling
* Ignore group » Estimate a separate
structure altogether model for each group

Compromise

Hierarchical Model

» Estimates parameters
using a compromise
between complete
pooling and no pooling.

=<

2
o . a O, O,
.NN(aj[i]'l'ﬂj[i]'Xi,O-z) where (ﬂijNu:lu :|9ZJ > z:[ 2ﬁ
J

Hp Ous Op
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A credible approach

 For illustration, recall the random intercept model:
Y,~N(a,+FX,,0%)  a;~N(u,.00)

 This model can contain a large number of parameters {a,...,a 3}

* Regardless of J, it contains 4 hyperparameters {u_, B, o, 6}

» Here is how the hyperparameters relate to the parameters:

A _ " n.
a,=2Z,-(y;—px;)+(1-Z,)- 4, where Z,= /

2
9
00(

Bdhimann credibility is a special case of hierarchical models.
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A Fully Bayesian Model
With a Case Study



Case study data

» A garden-variety Workers Comp Schedule P loss triangle:

Cumulative Losses in 1000's

AY premium 12 24 36 48 60 72 84 96 108 120 CL Ult CLLR CLres
1988 2,609 404 986 1,342 1,582 1,736 1,833 1,907 1,967 2,006 2,036 2,036 0.78 0
1989 2,694 387 9%4 1,336 1,580 1,726 1,823 1,903 1,949 1,987 2,017 0.75 29
1990 2,594 421 1,037 1,401 1,604 1,729 1,821 1,878 1,919 1,986 0.77 67
1991 2,609 338 753 1,029 1,195 1,326 1,395 1,446 1,535 0.59 89
1992 2,077 257 569 754 892 958 1,007 1,110 0.53 103
1993 1,703 193 423 589 661 713 828 0.49 115
1994 1,438 142 361 463 533 675 0.47 142
1995 1,093 160 312 408 601 0.55 193
1996 1,012 131 352 702 0.69 350
1997 976 122 576 0.59 454

chain link 2365 1354 1.164 1.090 1.054 1.038 1.026 1.020 1.015 1.000 12,067 1,543

chain Idf 4720 1996 1.473 1.266 1.162 1.102 1.062 1.035 1.015 1.000

growth curve 21.2% 50.1% 67.9% 79.0% 86.1% 90.7% 94.2% 96.6% 98.5% 100.0%

» Let’'s model this as a longitudinal dataset.
* Grouping dimension: Accident Year (AY)

« We can build a parsimonious non-linear model that uses random effects to allow

the model parameters to vary by accident year.
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Growth curves — at the heart of the model

 We want our model to

reflect the non-linear nature Weibull and Loglogistic Growth Curves
of loss development_ Heursitic: Fit Curves to Chain Ladder Development Pattern
* GLM shows up a lot in the 1.0
stochastic loss reserving
literature...
... but are GLMs natural models o 08 - G(x| @.0) x?
for loss triangles? T Xlw,0)=——"-—
or loss triangles g 1 0°
=
 Growth curves (Clark 2003) £ 06 7
« vy = ultimate loss ratio % G(x|w,0)=1—exp (— (x/@)a’)
« 0 =scale s
. " > 04
* o = shape (“warp”) 5
>
g
* Heuristic idea 0.2 -
* We judgmentally select a — Loglogistic
growth curve form — Weibull

» Lety vary by year (hierarchical) 0.0

I I I I I I I I I I I I I I
* Add priors to the

hyperparameters (Bayesian)

. Development Age

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180




Cumulative Loss

An exploratory non-Bayesian hierarchical model

t

yi(t,)=v,*p *(WJJF%(%)

- Itis easy to fit non-Bayesian hierarchical )
models as a data exploration step. — Vi~ N(Va Gy)

8i(tj) :pgi(tj—l)+5i(tj)

Log-Loglistic Hierarchical Model (non-Bayesian)
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Adding Bayesian structure

* QOur hierarchical model is “half-way Bayesian”
« On the one hand, we place probability sub-models on certain parameters
« But on the other hand, various (hyper)parameters are estimated directly from the data.

» To make this fully Bayesian, we need to put probability distributions on all
quantities that are uncertain.

» We then employ Bayesian updating: the model (“likelihood function”) together with
the prior results in a posterior probability distribution over all uncertain quantites.
* Including ultimate loss ratio parameters and hyperparameters!
« = We are directly modeling the ultimate quantity of interest.

* This is not as hard as it sounds:
« We do not explicitly calculate the high-dimensional posterior probability distribution.
* We do use Markov Chain Monte Carlo [MCMC] simulation to sample from the posterior.
» Technology: JAGS (“Just Another Gibbs Sampler”), called from within R.
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Results of a fully Bayesian hierarchical model

* Now we fit a fully Bayesian version of the model by providing prior distributions
for all of the model hyperparameters, and simulating the posterior distribution.

90% Posterior Credible Intervals: Log-logistic Hierarchical Bayes Model
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Results of a fully Bayesian hierarchical model

» Here we are using the most recent Calendar Year (red) as a holdout sample.
* The model fits the holdout well.

90% Posterior Credible Intervals: Log-logistic Hierarchical Bayes Model
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Bayesian credible intervals

* Now refit the model on all of the data and re-calculate the posterior credible intervals.

90% Posterior Credible Intervals: Log-logistic Hierarchical Bayes Model

Refitting on All of the Data

1988 1989 1990 1991 1992
Upper 95%
y Median : * v
Lower 5% *
1993 1994 1995 1996 1997
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Comparison with the chain ladder

For comparison, superimpose the “at 120 months” chain ladder estimates on the
posterior credible intervals.

90% Posterior Credible Intervals: Log- Iogllstlc Hierarchical Bayes Model

Add Chain Ladder Estimated Ultimates by AY
1988 1989 1990 1991 1992
. 2 - " 2 a
- - ¥ . o
- - 7 Q
Upper 95% 4 7
* Median * .
Lower 5% '
1993 1994 1995 1996 1997
g
ot o Q
. - a a
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Posterior distribution of aggregate outstanding losses

* Inthe top two images, we sum Outstanding Loss Estimates at Different Evaluation Points

Up the projected |OSS€S fOr a” Estimated Ultimate Losses Minus Losses to Date
estimated AY’s evaluated at 120 At 120 Months
(180) months; then subtract 1 W] " chain ladder estimate

losses to date (LTD).

* For the 120 month estimate, the

posterior median (1519) comes very
close to the chain ladder estimate —'_‘_( —|_’_'1
(1 543) 500 1000 1500 2000 2500 3000 3500 4000

At 180 Months

* In the bottom image, we multiply
the estimated ultimate loss ratio
parameters by premium and
subtract LTD. —H{

500 1000 1500 2000 2500 3000 3500 4000

At Ultimate

 Deciding which of these options
is most appropriate is akin to
selecting a tail factor.
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